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a b s t r a c t

In the deep submicron regime, the power and area consumed by router buffers in network-on-chip (NoC)
have become a primary concern. With buffers elimination, bufferless routing is emerging as a promising
solution to provide power-and-area efficiency for NoC. In this paper, we present a new bufferless
routing algorithm that can be coupled with any topology. The proposed routing algorithm is based on
the concept of making-a-stop (MaS), aiming to deadlock and livelock freedom in wormhole-switched
NoC. Performance evaluation is carried out by using a flit-level, cycle-accurate network simulator under
synthetic traffic scenarios. Simulation results indicate that the proposed routing algorithm yields an
improvement over the recent bufferless routing algorithm in average latency, power consumption, and
area overhead by up to 10%, 9%, and 80%, respectively.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Continued developments in very-large-scale integration (VLSI)
technology enable more cores available on a single chip [14]. To
meet the increasing complexity and communication requirements
arising in such large systems, scalable network-on-chip (NoC)
paradigm has been put forth as a potential solution [7,3,15].
Compared to traditional shared-bus on-chip communications, NoC
offers lower packet latency, better predictability, andmuch greater
scalability.

Although on-chip network has started to form the backbone
of communication between cores, the performance of such
interconnection network is bounded by the limited power and
area budgets [20]. It has been reported that a substantial portion
of system power is dissipated by NoC, e.g., roughly 30% in the
Intel TeraFLOPS chip [28] and 36% in the MIT RAW chip [27]. In
addition, the on-chip network has to compete with the cores for
the real estate of the same chip. Therefore, power consumption
and silicon area have been emerging as the most dominant
roadblocks for NoC design. It is critical to design power and area
efficient on-chip network. Based on different research techniques,
there is a broad avenue for research studies of power reduction
in NoC, spanning all the way from system level [1,21,26] to
microarchitecture level [13,22,18,17]. Among various proposed
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power efficient NoC designs, network topology and routing are two
of themost important aspects. In this paper, we focus on proposing
a new routing algorithm.

Routing algorithms can be classified in several ways in the
literature. In buffered routing, when packets compete for the same
output port, the winning packet advances through the output port
while the losing ones can be stored at buffers in the router until
the required port becomes available. However, despite of its ability
to improve bandwidth efficiency, buffer dominates both the on-
chip network power and area [28,11]. For example, router buffers
dissipate 22% of the router power [28] and consume 75% of NoC
area [11]. In addition, buffering adds the complexity of on-chip
network design. Not only extra logics are needed to place packets
into and out of buffers, specific buffer management mechanism
also needs to be implemented to prevent buffers from overflowing.
Last but not least, deadlock may arise when buffers are not
allocated properly [6,5].

Based on the above observations, a promising solution is to use
the bufferless routing method [24,10,12,23]. In bufferless routing,
there is no buffer to house packetswhennoproper output ports are
available for them. Once contention arises, a router must decide
how to dispose the packets which fail to get the proper output
ports. Two main mechanisms of such disposition, dropping and
deflecting, have been proposed. With dropping mechanism, failed
packets are dropped and then retransmitted by the source node.
The main problem in dropping mechanism is that on one hand,
the source node needs to store the issued packet until a positive
acknowledgment packet is received; on the other hand, in the
event of collision, a negative acknowledgment (NACK) packet is
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sent back to the source node to trigger the retransmission of the
dropped packet. The injection of NACKs and the retransmission
of dropped packets obviously increase total network burden
especially in a heavy-loaded network. Moreover, as NACKs cannot
be dropped, small NACK buffers are required in routers input port
[10] or additional separate NACK network is implemented [12],
both ofwhich increase the design complexity and do not rigorously
prove livelock freedom.

As most on-chip network designs cannot tolerate the dropping
of packets [16], in this paper, we adopt deflecting bufferless
routing. Deflection routing was first introduced as hot-potato
routing in [2]. When deflected, a packet is sent in the non-
minimal direction, getting away from its destination. If a packet
is deflected too often, it may never get close to its destination.
Moscibroda and Mutlu [24], Fallin et al. [9] provide livelock
freedom guarantee in a bufferless deflection routing, either with
oldest-first arbitration [24] or golden packet [9] scheme. However,
when combined with wormhole switching [25], the most widely
adopted switching technique for NoC routers, it may not guarantee
the livelock freedom any more. With wormhole switching, each
packet is divided into several flow control units (flits). The head
flit carrying the routing information governs the route. Routers
arbitrate only among the head flits. As the head flit advances along
the specific route, the body flits simply follow the reserved route
and the tail flit will later release the route reservation. Due to this
pipeline nature, it ismuchmore likely for a packet to be deflected in
wormhole-switched networks. More specifically, since arbitration
is performed only for head flits, there is no chance for a packet
to compete with another in-flight packet from other input port
(in-flight means packets are being transmitting their body flits);
deflection thus occurs. Such a case can happen to a packet in all
routers, resulting in it never reaches its destination. That is, livelock
happens. Livelock freedom in awormhole-switched bufferless NoC
is not proved in [9].

To deal with the livelock problem of deflecting bufferless
routing in wormhole-switched networks, the authors in [24]
recently propose worm truncation mechanism named BLESS-
Worm. However, the worm truncation mechanism has introduced
several potential problems [23]. First, besides the mapping
information between output ports and allocated packets, each
router needs to store the packet header information in case
of truncation. Second, routers have to create head flits out of
body flits at the time of truncation. Mean-while, routers have
to notify the corresponding neighboring router, triggering the
release of the output port mapping of the truncated packet. Third,
additional wires between routers are required to transport routing
information. Fourth, since flits are serviced one by one in the
order of their rank, the truncated packet may be assigned the
output port that has been already allocated to another packet,
causing the latter one to be truncated. Consequently, a ‘‘domino
effect’’ ensues, in which there is a sequence of packets where each
packet truncates the next packet in the sequence. Last but most
importantly, buffering at the receiver side is increased, which may
outweigh the potential area saving. Since packets can be truncated,
flits of the same packet may take different paths to reach the
destination. Thereby, BLESS-Worm requires additional logic and
buffering resources at destinations to reorder the out-of-order
arriving flits of the same packet. The number of packets may be
unbounded as packets can arrive in an interleaved manner. Thus
the buffers should be sized for the worst case.

Based on the above analysis, we propose a new bufferless
routing algorithm for wormhole-switched NoC, in which the
notion of making-a-stop (MaS) is introduced. The main objective
of MaS is to solve the livelock problem in wormhole-switched
bufferless routing algorithm. By making a stop, there is no need to
truncate packets, thus removing the large buffering requirements
at the receiver and other overheads caused by worm truncation
mechanism.

The remainder of the paper is organized as follows: Section 2
describes the MaS bufferless routing algorithm. Section 3 presents
the microarchitecture of MaS router and comparisons between
MaS and BLESS-Worm. Section 4 shows the simulation results
in performance evaluation and a brief conclusion is drawn in
Section 5.

2. Making-a-stop bufferless routing algorithm

In this section, we describe the new bufferless routing
algorithm. Although the proposed routing algorithm is topology-
agnostic, for better description, we consider a wormhole-switched
2D mesh NoC. By means of an example in Section 3.1, we show
how our approach works. We then present a formal description of
the MaS algorithm. Finally, we prove the proposed MaS are both
deadlock- and livelock-free.

2.1. MaS outline

We first outline the basic idea of the proposed MaS algorithm.
Suppose that, at time t , moving toward the destination node
(1, 3), the head flit of packet P1 arrives at the router of node
(1, 1), requesting the east output port which brings it closer to the
destination (see the snapshot in Fig. 1a). However, at this time, the
east output port has been allocated to P2 coming from the north
input port and the west output port has been allocated to P3.

Even though packet P1 is the highest-ranked packet at this
moment, it cannot get the desired east output port as packet P2
is currently transmitting its body flits. In such case, in order to
avoid livelock, packet P1 makes a stop at the register array of router
(1, 1), as shown in Fig. 2a (the corresponding snapshot is depicted
in Fig. 1b). It should be emphasized that as the ranking of packets
has locality property, the current highest-ranked packet may not
be the highest-ranked one at the next moment andmay be evicted
from register array by the highest-ranked packet at that time.

Continuing with the example in Fig. 2a, at time (t + 2), moving
toward the destination node (1, 0), the head flit of packet P0 arrives
at the router (1, 1). At this moment, both packets P2 and P3 are
in-flight packets, indicating the east and west output port are still
not available for other packets (see Fig. 1c). We assume that packet
P0 is the highest-ranked packet at time (t + 2). Since the west
output port has been allocated to P3 and no truncation is allowed,
P0 cannot get the desired west output port. To avoid starvation
of the highest-ranked packet, instead of being deflected, packet
P0 makes a stop. In order not to incur large area overhead, P1 is
evicted from the register array to vacate the register for the current
highest-ranked packet P0, and it is deflected to north output port
as the east output port is not available (Fig. 2b). As the channel
can forward only one flit once one time, the head flit of P1 is
evicted while the current arriving body flit takes over the place,
resulting in a dynamic balance (the corresponding snapshot is
shown in Fig. 1d).

2.2. MaS algorithm

MaS employs a minimal adaptive bufferless routing algorithm.
With MaS, each packet is routed independently of every other
through the network. In addition to destination information, each
packet contains a priority information indicating its rank when
contention happens. In [19], it shows that priority-based deflection
policies using global or history-related criterion are beneficial in a
deflection routing on-chip network. Based on this idea, we employ
a global priority-based deflection policy which assumes there is a
total age order among packets (e.g., timestamp) and ranks packets
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Fig. 1. Snapshots at time t and (t + 2). (a) At the beginning of time t . (b) At the end of time t . (c) At the beginning of time (t + 2). (d) At the end of time (t + 2).
a b

Fig. 2. An outline of MaS algorithm. (a) Arbitration at time t . (b) Arbitration at time (t + 2).
based on their age. The elapsed time that a packet has traversed
in the network is regarded as the age of the packet. The older
packets have higher priority than the younger ones in output port
assignment. Once the head flit of a packet is assigned a specific
output port, all subsequent flits simply follow the preceding flit.
When the productive port(s) which results in the shortest path
is not available, the highest priority packet makes a stop at the
current routerwhile the lower priority packets are deflected to any
free output ports.

MaS algorithm distinguishes between the non-head flits and
head flits. For a non-head flit, it is assigned the specific output port
that has already assigned to its packet. For head flits,MaS algorithm
ranks all head flits based on their age. Head flits are then serviced
in the order of their ages. For a head flit, the router assigns it to the
productive output port if the output port is available. If there are
more than one productive output ports available, MaS algorithm
randomly picks one. If no productive output port is free, MaS
algorithm further distinguishes between the oldest head flit and
non-oldest head flit. For the oldest head flit, it is allowed to make a
stop at register array, which may force the current occupying flits
to leave the register array. For a non-oldest head flit, it is assigned
any free output port. In case no output port is free, the non-oldest
head flit makes a stop (note that in such a case, the oldest head
flit must have been assigned the productive output port). Formal
description ofMaS routing algorithm is given in Algorithm1below.

Note that in Algorithm1, (cx, cy) is the current node address, and
(dx, dy) is the destination node address carried in head flit f . e, w,
n, s, and l represents east, west, north, south, and local output port,
respectively.

2.3. Deadlock and livelock

When designing routing algorithm, it is critical to guarantee the
absence of deadlock and livelock.
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Algorithm 1 MaS algorithm
Input: Flit f .
Output: Port assignment p.

function ∆ = D(f )
1: ∆←∅
2: if (dx > cx) then
3: ∆←∆ ∪ {n}
4: if (dy > cy) then
5: ∆←∆ ∪ {e}
6: else if (dy < cy) then
7: ∆←∆ ∪ {w}
8: end if
9: else if (dx < cx) then
10: ∆←∆ ∪ {s}
11: if (dy > cy) then
12: ∆←∆ ∪ {e}
13: else if (dy < cy) then
14: ∆←∆ ∪ {w}
15: end if
16: else
17: if (dy > cy) then
18: ∆←∆ ∪ {e}
19: else if (dy < cy) then
20: ∆←∆ ∪ {w}
21: else
22: ∆←∆ ∪ {l}
23: end if
24: end if
25: return ∆

MaS algorithm procedure:
26: if f is head flit then
27: productive port(s) Ω←D(f )
28: if ∃ p ∈Ω , p unallocated then
29: assign f to p
30: else
31: if f is the oldest flit then
32: allow f to make a stop
33: set p to empty
34: if f ‘ is currently occupying the register array then
35: f ‘ is evicted
36: end if
37: else
38: if ∃ p, p unallocated then
39: assign f to p
40: else
41: allow f to make a stop
42: set p to empty
43: end if
44: end if
45: end if
46: else
47: assign f to the port p which is granted to its packet
48: end if
49: return p

Proposition 1. The proposedMaS routing algorithm is deadlock-free.
Proof. Since a node can inject a packet into its router if and only
if at least one incoming channel is free and the register array is
empty, we analyze the deadlock issue from two aspects.

• Case 1: the node injects a packet: Consider that i(i < 4) packets
enter the router at cycle 0 and the register array is empty. In this
situation, the node is allowed to inject a packet into the router,
as shown in Fig. 3. Fig. 4 indicates the port mapping in cycle
0. If the productive port is not available, a non-oldest packet is
deflected to any other free output port while the oldest packet
makes a stop at the register array. For simplicity, we assume
there is no need to make a stop. Since packets can always find
an output port to leave the router, no cyclic dependency can
exist among the channels, and therefore the MaS is deadlock
free. At cycle 1, the proofs for deadlock freedom with different
number of incoming packets i(i ∈ {0, 1, 2, 3}) are similar to
cycle 0. We need to pay special attention to the situation when
all the incoming channels are busy, as shown in Fig. 5. In this
situation, since there is no available output port for the new
incoming packet, the new packet makes a stop in order not to
be dropped. Again, no cyclic dependency can exist among the
channels.
• Case 2: the node does not inject a packet: In this case, there

are at most four incoming packets. Due to the deflecting policy,
packets can always find an output port to leave the router. Thus,
deadlock is free.

In any case, no cyclic dependency can exist among the channels,
and then the MaS algorithm is deadlock free. �

Proposition 2. To avoid livelock, the size of register array should be
K flits, where K ∈ Z+ is the maximum length of packet.

Proof. For ease of presentation, we assume that all packets have
the same length. Recall that a packet is evicted from the register
array when the current highest priority packet does not get its
productive output port. Let us consider the worst case: a packet
P arrives at the router at cycle t , being the highest priority packet
in the current router. Unfortunately, the desired output port has
been allocated to other packet at cycle (t−1); packet P thusmakes
a stop. However, at next cycle (t + 1), the packet P has to be
evicted from register array as P is not the highest priority packet
(a) i = 0. (b) i = 1. (c) i = 2. (d) i = 3.

Fig. 3. With different numbers of incoming packets at cycle 0.
(a) i = 0. (b) i = 1. (c) i = 2. (d) i = 3.

Fig. 4. Port mapping at cycle 0.
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Fig. 5. (a) Snapshot at the beginning of cycle 1. (b) Snapshot at the end of cycle 1.

at cycle (t + 1). We denote Pi > Pj to indicate that Pi has higher
priority than Pj.

(a) Cycle 0:Without loss of generality, we first assume the head
flit Hw of packet Pw from west input port arrives at the router R. It
is assigned the north output port as no other packets compete for
the port (Fig. 6a).

(b) Cycle 1: Coming from east input port, packet Pe arrives at
router R, with higher priority than Pw (i.e., Pe > Pw). Assumepacket
Pe desires north output port. Since the north output port has been
assigned to Pw at cycle 0 and Pw still has body flits (Bw1) not left the
router R, Pe makes a stop at the register array (Fig. 6b). In this cycle,
Bw1 is forwarded through the north output port.

(c) Cycle 2: Coming from south input port, packet Ps arrives,
with Ps > Pe > Pw , and requests the north output port. As Pw

does not release the north output port, Ps, being the highest priority
packet at this cycle, makes a stop at register array, forcing Pe to
move out of the register array. Hence, Pe is deflected to the south
output port (Fig. 6c). Note that as the channel capacity is one flit per
cycle, the head flit He of Pe is forwarded through the south output
port while new arriving body flit Be1 takes over the space of He,
keeping a dynamic balance.

(d) Cycle 3: Coming from north input port, packet Pn arrives,
with higher priority than Ps and desiring the south output port. As
the south output port has been allocated to Pe at cycle 2, Pn makes
a stop, causing Ps be evicted from the register array and deflected
to west output port. Just as described at the previous cycle 2, Be1
is forwarded through the south output port and the new arriving
body flit Be2 takes over the space of Be1; head flit Hs is forwarded
through the west output port and the new arriving body flit Bs1
takes over the space of Hs (Fig. 6d).

(e) Cycle K : We assume Pn has the highest priority within the
network. Thus, no packets can force Pn to get out of the register
array. At this cycle, the register array contains K flits (Fig. 6e). After
that, the register array will not maintain more that K flits (Fig. 6f).

With eviction policy, in any case, the number of flits residing in
the register array will not exceed K . �
Based on the above analysis, two observations can be made as
follows.

Observation 1. With deflecting strategy, instead of implementing
virtual channels or turn forbidden [8], all arriving flits are enabled
to find an output port to advance or make a stop, thus no
cyclic dependency among the channels is formed. With oldest
first ranking policy and introduction of making-a-stop, the oldest
packet can always be assigned a productive direction immediately
or in a few cycles, hence makes forward progress and eventually
reaches its destination. A packet will become the oldest packet
within the network eventually. Hence, freedom of deadlock and
livelock is guaranteed.

Observation 2. Via eliminating router buffers, MaS enables power
efficiency. By making a stop, no packet is truncated. Hence, flits
of the same packet are transmitted in order. As a result, no large
buffering is required to reorder the flits to enable in-order delivery.
In this way, combining router buffers elimination, MaS achieves
area efficiency.

3. MaS router

The MaS router is designed to eliminate router buffers, limit
additional receiver-side buffering requirements, and to provide
livelock freedom for wormhole-switched deflecting bufferless
routing.

3.1. Router microarchitecture

Fig. 7 shows the major components of MaS router. The MaS
router consists of an arbitration unit, a register array, and a switch
crossbar. Arbitration unit determines the output port towhich a flit
can be forwarded. Register array which in fact is a dynamic, multi-
queue implementing the making-a-stop mechanism. It allows
packets traveling within the network to make a stop when
necessary. Switch crossbar is responsible for forwarding the flit
to the appropriate output port. In order to avoid large switch
crossbar which consumes large area, muxes are added to connect
the register array to switch crossbar. The inputs to the muxes
can be classified as either register array inputs (e.g., inputs from
register array) or direct inputs (e.g., inputs from the neighboring
routers).

To avoid deflecting packets to ejection ports, a node can inject
a flit into its router only when the register array is empty and at
least one incoming channel is free.
(a) Cycle 0. (b) Cycle 1. (c) Cycle 2. (d) Cycle 3.

(e) Cycle k. (f) Cycle k+ 1.

Fig. 6. Snapshots at different cycles.
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Fig. 7. Microarchitecture of MaS router.

3.2. Comparison between MaS and BLESS-Worm

As far as we know, BLESS-Worm is the recently proposed
bufferless routing algorithm which considers both bufferless
routing and wormhole switching. In this subsection, we compare
the proposed MaS with BLESS-Worm in terms of channels,
buffering requirements at receiver-side, design complexity, and
worst-case execution time.

Channels:With BLESS-Worm, since worm truncation technique
is adopted, packets may have to be split under collision. In the
worst case, BLESS-Worm has to route all flits of the same packet
independently. Therefore, every flit needs to contain routing
information. BLESS-Worm uses additional wires between routers
to transport routing information, which consume dynamic energy
when wires are activated and static energy when wires are idle.
Moreover, each node is subject to a fixed pin limitation, thus
increasing the number of channels leads to narrow channel width.
Thus, serialization latency is induced by squeezing a large packet
through a narrow channel. In contrast, in MaS, packets are never
truncated and can always be routed in their entirety. Hence, there
is no need to narrow channel width for the separate header bits.

Buffering requirements: Fig. 8 shows the occurrence of trunca-
tion before network saturates in a 2D 10 × 10 NoC, with routers
implementing the BLESS-Worm routing algorithm. In particular,
with the term ‘‘occurrence of truncation’’, we hereby mean the re-
lationship between the number of worm truncation happens and
the total number of packets, i.e., the average truncation occurrence
per packet. As can be observed, on average, the occurrence of trun-
cation is over 1.7 (i.e., on average, a packet needs to be truncated
twice before reaching its destination). As a result, unbounded ex-
tra logic and buffers are needed to reorder the out-of-order arriv-
ing flits of the same packet for BLESS-Worm. However, in MaS, as
packets are not divided, flits of the same packet can be guaranteed
to remain in order. Thus, no additional buffering is required at re-
ceiver side to reorder the flits.

Design complexity: The BLESS-Worm router needs to create head
flits out of body flits at the time of truncation. As a result, extra logic
is needed to maintain not only allocation information but also the
packet header information from the original head flit of a packet.
In addition, a sequence number is needed to reorder the flits of a
packet if they get out of order in transit. While in MaS, a fixed-size
register array is implemented in a dynamical, multi-queue fashion
at each router. In addition, since packets will arrive in order, no
sequence number is required.

Worst-case execution time: Here, we simply consider an
‘‘unlucky’’ packet to analysis the worst-case execution time. An
‘‘unlucky’’ packet is the highest-rank packet with its productive
output port(s) is always allocated to other packet just before
Fig. 8. Occurrence of truncation under different traffic scenarios.

Table 1
Network configuration.

Network size 10× 10 mesh
Clock frequency 2 GHz
Link length 128 bits
Switching technology Wormhole
Router latency 2 cycles
Channel latency 1 cycle
Flit size 128 bits
Packet size 8 flits

the ‘‘unlucky’’ packet arrives at the router. In BLESS-Worm, the
‘‘unlucky’’ packet is able to get the desired output port immediately
by truncating other packet; while in MaS, the ‘‘unlucky’’ packet
needs to making-a-stop at every intermediate router, thus it may
need more time to reach destination at such worst-case. However,
the ‘‘unlucky’’ packet in MaS does not impact other packets so
much as in BLESS-Worm. In the latter, more packets may be
involved into truncation, as the truncated packet may truncate
other packets, spreading the truncation scope. While in MaS, only
the ‘‘unlucky’’ packet is involved.

4. Performance evaluation

4.1. Evaluation methodology

The performance of MaS has been evaluated using a flit-
level, cycle-accurate on-chip network simulator based on the
booksim [4]. The modeled on-chip network configuration is 2D
mesh topology with single-cycle channels. A baseline router has
five input ports and five output ports; while an MaS router has
five input ports, five output ports, and a dynamic, multi-queue
register array. Within each simulation for a synthetic traffic there
is a warm-up period of 100,000 cycles. Thereafter, 10,000 packets
are injected per node and the simulation continues until these
packets in the sample space are all received. We define that on-
chip network saturates when average packet latency is over twice
of zero-load latency. Table 1 specifies the configuration parameters
in our performance evaluation.

We use three different traffic patterns: uniform random (UR),
transpose (TR), and hotspot (HS). UR traffic assumes each node
uniformly injects packets to randomly distributed destinations in
the network. In TR traffic, the node (i, j) only communicates with
node (j, i). In HS traffic, four hotspot nodes are located at the center
of the network. The 80% of traffic is sent to randomly distributed
destinations in the network, while the remaining traffic is to the
hotspot nodes.

Packet latency is calculated from the time when the first flit of
a packet is generated, to the time when its last flit is ejected at



J. Lin et al. / J. Parallel Distrib. Comput. 72 (2012) 515–524 521
(a) Uniform random. (b) Transpose.

(c) Hotspot.

Fig. 9. Average packet latency under different traffic patterns.
the destination, including source queueing time. In BLESS-Worm,
as packets may have to be truncated when congestion arises,
flits of the same packet may follow different paths to reach the
destination. That is, one flit may be deflected at current router
and be deflected again at the next router. From statistics point of
view, it is more likely that one flit is delayed or takes a detour,
thereby delaying the entire packet. Hence, BLESS-Worm can have a
negative impact on packet latency. However, a packet is treated as
an entirety inMaS. Thus once the head flit of the packet is allocated
to a productive output port, all subsequent flits follow the head flit
and make forward toward the destination with no flits deflecting
at the current router.

Thepowermodel is basedon the32nmprocess technology sim-
ilar to [1,23]. More precisely, the power consumption, measured
using the Pflit metric, is defined as the power needed to transmit
one flit from the source to the destination. Pflit is given by Pflit =
PCflit + PSflit , where PCflit represents the power consumed by flits
traversing through the channels while PSflit represents the power
needed by the switches in the router. In MaS, we further model
the power consumed by register array. While in BLESS-Worm, ad-
ditional wires are dedicated for header transmission, which incurs
extra overhead such as power consumption. However, this over-
head is not modeled in our evaluation, giving BLESS-Worm a small
advantage over MaS.

Since bufferlessNoC is considered,we roughly estimate the area
overhead of buffers at the receiver in terms of flits using a simple
model: Sbuf = Nbuf × NR, whereNbuf is the number of receiver side
buffers per node and NR is the number of routers. BLESS-Worm
eliminates input buffers of router at the cost of increasing receiver
side buffers. MaS also gets rid of input buffers and only needs a
(first-in first-out) FIFO buffer per input port at receiver as well as a
register array.

In addition, average maximum buffering requirement is the
average over several maximum buffering requirements observed
in different traffic patterns, which aims to avoid biasing the
workload in favor of one architecture or traffic pattern. Recall that
a packet can be truncated when necessary in BLESS-Worm, flits
from the same packet may take independent routes and arrive
at significantly different points in time at the destination. Thus
flits of the same packet can arrive in out-of-order, which increases
buffering requirements at the receiver to support in-order delivery
of packets. Since packets can arrive interleaved, the buffering
resources which are needed to reorder the out-of-order flits of
the same packet can be unbounded. The potential cost savings by
eliminating input buffers may be outweighed by the increasing
buffering requirements at receivers. However, a packet is routed
as a complete entity in MaS, thus reducing buffering requirements
at receiver side. The receiver in MaS approach only needs an
FIFO buffer per input port, which effectively reduces buffering
requirements at the receiver.

4.2. Simulation results

In this section, we compare MaS with the recent proposed
deflecting bufferless routing BLESS-Worm [24] in terms of average
packet latency, average hop count, power consumption, and
average maximum buffering requirement at the receiver side.

Fig. 9 depicts average packet latency as a function of injected
rate under different synthetic traffic patterns. Clearly, MaS out-
performs BLESS-Worm in average packet latency under all levels
network traffic loads. The latency reduction of MaS as compared
to BLESS-Worm is up to 10% (UR), 6% (TR), and 6% (HS), respec-
tively. The reason is that packets may be segmented under conges-
tion with BLESS-Worm. Therefore different segments of the same
packet may take different paths reaching the destination. Obvi-
ously, withmore segments, it ismore likely that one segment takes
detour thereby delaying the whole packet.

Fig. 10 shows the average hop count per packet as a function
of injected rate under different synthetic traffic patterns before
network saturates. It can be observed that the average hop count
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(a) Uniform random. (b) Transpose.

(c) Hotspot.

Fig. 10. Average hop count under different traffic patterns.
(a) Uniform random. (b) Transpose.

(c) Hotspot.

Fig. 11. Power consumption under different traffic patterns.
is quite a constant with MaS as traffic increases while it climbs
quicklywith BLESS-Wormasnetwork approaches saturation.More
precisely, the average hop count reduction of MaS over BLESS-
Worm is up to 25% (UR), 24% (TR), and 23% (HS), respectively. Due
to the existence of register array, packets are always routed in their
entiretywhich reduces the deflecting probability. Note that at least
two extra hops are induced by one deflection. As a result, lower
deflecting results in lower hop count.

Fig. 11 indicates power consumption as a function of injected
rate under different synthetic traffic patterns. It can be observed
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Fig. 12. Maximum buffering requirements at receiver side per input port.

that power consumption in MaS approach is lower than that in
BLESS-Worm. The reduction of power consumption of MaS against
BLESS-Worm is up to 9% (UR), 9% (TR), and 8% (HS), respectively.
As routers and links are contributors to power consumption, lower
hop count results in lower power consumption.

We plot the average maximum buffering requirement in flits
at receiver as traffic increases in Fig. 12. BLESS-Worm increases
buffering requirements at the receiver due to truncations. The
worm truncation mechanism enables a packet be truncated into
several parts. Each part of a packet arrives at different time, which
increases buffering requirements to support in-order delivery. It
can be observed from Fig. 12 that in BLESS-Worm the average
maximum buffering requirement arises rapidly as network is
approaching saturation. In the case where injection rate is 0.08,
we find that MaS reduces the buffering requirements by about
70% compared to BLESS-Worm, while the reduction of buffering
requirements arise up to 80% when network gets close saturated.

5. Conclusion and future work

To address the issues of area and power in on-chip network,
in this paper, we have proposed an area-benefit approach MaS
for bufferless on-chip network, which enables in-order delivery
without large buffering requirements at receiver side while
maintaining the energy efficient. Compared to recent proposed
deflecting bufferless routing BLESS-Worm, MaS reduces the
increasing buffering requirements at receiver side which is caused
by out-of-order arriving. In addition, the deadlock and livelock
freedom of MaS algorithm have been proved. Extensive cycle-
accurate simulations have been conducted to show that MaS
delivers a better performance compared to BLESS-Worm. Results
show that MaS lowers average packet latency by 10% and power
consumption by 9%, respectively. Moreover, it reduces buffer
requirements at the receiver by up to 80%. For future work, the
analysis of real traffic will be conducted. In addition, the routing
algorithm should be evaluated in other priority ranking policies
such as most deflecting-first method.
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